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We consider the multi-point equal time height fluctuations of the one-dimen-
sional polynuclear growth model in half-space. For special values of the nuclea-
tion rate at the origin, the multi-layer version of the model is reduced to a
process with a determinantal weight, for which the asymptotics can be analyzed.
In the scaling limit, the fluctuations near the origin are shown to be equivalent
to those of the largest eigenvalue of the orthogonal/symplectic to unitary tran-
sition ensemble at soft edge in random matrix theory.
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1. INTRODUCTION

The problems of random surface growth have been an important subject of
non-equilibrium statistical physics. (1, 2) Interestingly, surfaces show univer-
sal statistical behaviors, depending on which mechanism plays a major role
in growth. Among them is the Kardar–Parisi–Zhang (KPZ) universality
class. (3) Though in many cases it is not enough to describe the growth of
real materials, the KPZ universality class gives a satisfactory understanding
of many growth models such as the Eden model, and hence plays a pro-
minent role in theoretical study of growing surfaces.

It is difficult to study the KPZ universality class analytically for
general dimension. In one spatial dimension, however, some exact results
had been obtained. For instance, the exponents are already obtained in



ref. 3 based on dynamical renormalization group techniques. These have
been further confirmed by exact solutions for the models in the KPZ uni-
versality class. (4, 5) We will also restrict our attention to one spatial dimen-
sional case in this article.

Recently, more refined information about the fluctuation properties of
the 1+1 dimensional KPZ universality class have been obtained. (6–15) For
some important quantities such as the height fluctuation, not only the
exponents but also the scaling functions are obtained. The whole new
developments originate from the work (16) on the statistics of the longest
increasing subsequence in a random permutation, which has turned out to
be closely related to the random surface growth models. (17)

The polynuclear growth (PNG) models are known to belong to the
KPZ universality class. (1, 2) The PNG models are simple models which
describe layer by layer random surface growth. In its standard version,
a nucleation of a layer with height one occurs with rate two per unit length.
After a nucleation, the layer grows laterally in both directions from the
nucleation point with unit speed. In addition, there occur nucleations with
rate two on already existing layers. A discrete version of the PNG model
was introduced in ref. 18 and studied further in ref. 19. The discrete PNG
model has a close relationship with the asymmetric simple exclusion
process (ASEP). (6, 13)

In refs. 7–9, the height fluctuation of the PNG model at a given time
and a given position was studied. It turned out that the fluctuation strongly
depends on the geometry of the models. For instance, for the model in the
infinite space, the fluctuation at the origin is described by the GUE
Tracy–Widom distribution in random matrix theory. (20, 21) On the other
hand, for the model in half-space with an external source at the origin, it
is described by the GOE/GSE Tracy–Widom distributions (22) or by the
Gaussian. Models with other geometries are also considered in refs. 7 and 8.
These are based on the results in refs. 9 and 23–25, in which the longest
increasing subsequence problem with some symmetries are considered.

For the models in the infinite space, multi-point equal time height
fluctuations are studied by introducing the multi-layer version of the PNG
model in ref. 14 for the continuous time case and in ref. 19 for the discrete
time case. It is shown that the scaling limit is described by the Airy process,
which is closely related to the dynamics of the rightmost particle of the
Dyson’s Brownian motion model. (26)

In this article we study the multi-point equal time height fluctuations
of the PNG model in half-space with external source at the origin. As
mentioned above, the fluctuation at a single point has already been con-
sidered in refs. 7 and 25. At the origin, it is given by the GOE/GSE
Tracy–Widom distribution whereas at other points, it is the GUE
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Tracy–Widom distribution. But the multi-point fluctuation has not been
studied. Following the ideas of refs. 14 and 27, we introduce the multi-layer
PNG model. In the scaling limit we will show that the crossover between
the fluctuation at the origin and that in the bulk corresponds to the
orthogonal/symplectic to unitary transition at soft edge in random matrix
theory. (28)

For the Gaussian case, the transition ensemble to the GUE is
described by the joint distribution,

P(X(0); X; y)=Ay exp 1−
Tr{(X − e−yX (0))2}

|1 − e−2y|
2 , (1.1)

for two matrices X and X (0), where X is a hermitian N × N matrix and X (0)

is an initial matrix. In addition y (\ 0) is a parameter and Ay is a nor-
malization constant. When we choose X (0) as the GOE/GSE random
matrix, (1.1) describes the orthogonal/symplectic to unitary transition.
If one averages over this distribution of X (0), the distribution of X is
obtained. For the orthogonal case, it reads

P(X; y)=D
N

j=1

e−X2
jj/(1+e − 2y)

`p(1+e−2y)
D
j < k

2

p `1 − e−4y
e−2 Re X2

jk/(1+e − 2y) − 2 Im X2
jk/(1 − e − 2y).

(1.2)

As is obvious from this, the parameter y represents to what extent the
transition proceeds. For y Q 0, (1.2) reduces to the distribution for the
GOE, whereas for y Q . it approaches that for the GUE. The expression
for the symplectic case is similar but a little more involved.

The outline of the paper is as follows. In the next section, the model
we consider is defined. In Section 3, the Fredholm determinant expression
of the correlation functions are considered. Section 4 deals with the scaling
limit of the models. In Section 5, the results for the model without external
source at the origin are summarized. The standard PNG model in half-
space can be considered by taking the limit for the discrete model. This is
done in Section 6. Some discussions, conjectures and Monte-Carlo results
are given in Section 7, followed by the conclusion in the last section.

2. MODEL

Let r ¥ N={0, 1, 2,...} and t ¥ N denote the discrete space and time
coordinates respectively and h(r, t) the height of the surface at position r
and at time t. Our model lives in half-space r ¥ N, but we can extend h(r, t)
to the whole space by setting h(r, t)=h(−r, t) for r ¥ Z, i.e., the height is
symmetric under the reflection with respect to the origin. We can further
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extend h(r, t) to all r ¥ R by setting h(r, t)=h([r], t). Then the height looks
symmetric under the reflection with respect to r=1/2, i.e., h(r, t)=
h(1 − r, t) for r ¥ R0Z. The model considered in this article is described as
follows. Initially at time t=0 we have a flat substrate. At an odd time
t=1, 3,..., nucleations occur at even sites r=0, ± 2,..., ± t − 1. At the
origin, a nucleation of a height k (¥ N) happens with the probability
(1 − c `q)(c `q)k where 0 < q < 1 and 0 [ c < 1/`q. For the height to be
symmetric, nucleations at other points should be symmetric with respect to
the origin; if a nucleation of a height k occurs at r, so does another at − r
as well. Each independent nucleation with height k occurs with probability
(1 − q) qk. At an even time t=2, 4,..., nucleations occur at odd sites
r= ± 1, ± 3,..., ± t − 1. The nucleations are again synchronous with respect
to the origin and a height of each independent nucleation is a geometric
random variable with parameter q. In the meantime the steps grow laterally
in both directions with unit speed. Sometimes a downstep and an upstep
collide with each other, in which case the two steps merge to one with the
higher height. See Fig. 1. As is clear, the parameter q is related to the
frequency of nucleations in the bulk whereas the parameter c represents
the strength of the external source at the origin. The bigger c is, the stronger
the source is. In particular c=0 corresponds to the model without the
external source at the origin.

Fig. 1. Dynamical rules of the discrete PNG model. (a) At time t, a nucleation of a height k
occurs at site r with probability (1 − q) qk when r ] 0 and (1 − c `q)(c `q)k when r=0. Once
the nucleation occurs, it grows laterally toward right and left with unit speed. (b) When two
steps collide, the one with higher height swallows the one with lower height. In the multi-layer
version, a nucleation occurs in the lower layer at the position above which the collision occurs
in the upper layer. The height is equal to the height of the swallowed region in the upper layer.

752 Sasamoto and Imamura



Mathematically, our discrete PNG model can be defined by

h(r, t+1)=max(h(r − 1, t), h(r, t), h(r+1, t))+w(r, t+1), (2.1)

with the initial condition h(r, 0)=0, r ¥ Z. Here w is the random variable
which takes a value in N. w(r, t)=0 if t − r is even or if |r| > t, and

w(i, j)=w(i − j, i+j − 1), (2.2)

(i, j) ¥ Z2
+ are geometric random variables. In our model, all w(i, j)’s are

not independent as in ref. 19, but a symmetry condition w(i, j)=w(j, i) is
imposed. The parameters of the independent geometric random variables
are given by q (resp. c `q) for off-diagonal (resp. diagonal) points,

P[w(i, j)=k]=(1 − q) qk, 1 [ j < i, (2.3)

P[w(i, i)=k]=(1 − c `q)(c `q)k, 1 [ i, (2.4)

for k ¥ N. Introduction of w(i, j) above is almost unnecessary for the
following discussions, but useful to see the connection to the problems of
last passage percolation and ASEP. (6, 9, 25)

We would like to know the statistical properties of h(r, t). As already
mentioned in the introduction, the fluctuation of the height at a single point
is already known. For c [ 1, it is given by the GOE/GSE Tracy–Widom
distribution at the origin (25) and by the GUE Tracy–Widom distribution
at other points. (7) In this article, we are interested in the crossover between
these two. Following refs. 14, 18, and 19, we introduce the multi-layer
version of the model which is defined as follows. In the original single-layer
discrete PNG model, when two steps meet, the higher step takes over the
lower one. The information of the lower step is lost. To keep this informa-
tion, let us suppose that there was a second layer below the original layer
from the outset. The height of the second layer remains − 1 until a collision
of steps happens at the first layer, at which time the nucleation for the
second layer occurs just below the collision. The height of the nucleation is
taken to be the height of the overlapped region of the higher and the lower
steps which collide at the first layer. See Fig. 1. The steps in the second layer
grows laterally in both directions with unit speed as in the first layer. The
nucleations at the second layer are only due to collisions of steps at the first
layer; there is no additional probabilistic nucleations. We denote the height
of the second layer at position r and at time t as h1(r, t). One can further
suppose that there were infinitely many layers below the first layer, equally
spaced at time 0 and successively construct hi(r, t) for i=2, 3,... . We also
set h(r, t)=h0(r, t). This is the multi-layer PNG model. An example of the
whole height configurations is given in Fig. 2.
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Fig. 2. An example of the multi-layer PNG heights for the c=1 case for q=0.25 at (a) t=6
(b) t=100. It looks symmetric with respect to r=1/2. The limiting shape is also shown as a
dotted line for (b).
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In the following, we mainly consider an even time, which is fixed to
t=M=2N until the asymptotics is considered. There are infinitely many
lines, but for time t=M the number of lines which are not straight is at
most N. Moreover, there is a restriction, h i(M, M)=−i (i=0, 1,...,
N − 1). When c ] 0, all possible height lines satisfying the symmetry condi-
tion with respect to the origin appear. When c=0, however, there is an
additional constraint on the possible height lines h i. Suppose, for instance,
that at t=2 nucleations with height k (> 0) occurs at r=± 1. Note that,
since c=0, the height at r=0 is necessarily 0. Then at t=3, two steps
collide and merge, accompanied by a nucleation with height k at the second
layer. Hence the height difference of the first and the second layers does
not change and is one. The same mechanism also applies to the following
times and the layers below, leading to the restrictions, h2i(0, t)=h2i+1(0, t)
+1 (i=0, 1,..., N/2 − 1) at time t=M=2N. Here and hereafter we
assume N is even when c=0. An example of a multi-layer heights for c=0
is given in Fig. 3, in which one sees that h2i and h2i+1 form a pair at r=0.

In the following, we devote our most discussions to the two special
choices of c where the detailed analysis is possible. One choice is c=1,
which is known to correspond to a critical point of the model. (25) The other

Fig. 3. An example of the multi-layer PNG heights for the c=0 case for q=0.25 at t=100.
Each neighboring two heights form a pair at r=0. The limiting shape is also shown as a
dotted line.
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is c=0, which corresponds to the model without the external source at the
origin. These two values are special because the weight of the multi-layers
can be calculated without reversing the time evolution. This is explained as
follows. The whole configuration of the layers keep all information of
nucleations before. Hence, for a given configuration of multi-layers, one
can reverse the time evolution, know w(i, j) for i+j [ 2N+1, i \ j, i.e.,
where and when nucleations of what height occur, and compute the weight
of the configuration. For each jump in multi-layers, one can know whether
it comes from a nucleation at the origin or one at r > 0. For each jump in
r \ 0 with length k of all layers, let us associate a weight (c `q)k if it comes
from a nucleation at the origin and a weight qk/2 otherwise. Then the total
weight is equal to the product of all weights of all jumps in the multi-layers,

D
i+j [ 2N+1, i > j

qw(i, j) D
N

i=1
(c `q)w(i, i). (2.5)

For c=0, 1, the weight attached to all possible jumps are equally qk/2 and
one does not have to reverse the time evolution to compute the weight.
This fact allows us to rewrite the total weight in a determinantal form
which enables us to proceed further as we shall see shortly. In the follow-
ing, the c=1 (resp. c=0) case will sometimes be referred to as the
orthogonal (resp. symplectic) case because it will turn out to be related to
the orthogonal (resp. symplectic) to unitary transition of symmetries in
random matrix theory.

From now on, we change the way of looking at multi-layer heights.
The space coordinate r in the original setting will be interpreted as the time
coordinate. The height coordinate will be interpreted as the space coordi-
nate and is represented as x. We set h i(r, t)=xr

i+1 for i=0, 1,..., N − 1 and
r=0, 1,..., M, and regard the height lines as paths of particles. Let us
denote the collection of the positions of particles at time r as x r=
(x r

1,..., x r
N) where x r

1 > · · · > x r
N, and a collection of them for all times as

x̄=(x0,..., xM).
In what follows we use a=`q. Suppose that, when the particle

picture of heights are employed, the x and r axes are pointing right and up
respectively. Then at odd times, particles move to the right. The transition
weight of a particle from x at time 2u to y at time 2u+1 is given by

f2u, 2u+1(x, y)=f2u, 2u+1(y − x)=˛ (1 − a) ay − x, y \ x,

0, y < x.
(2.6)
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At even times, they move to the left. The transition weight for each particle is

f2u − 1, 2u(x, y)=f2u − 1, 2u(y − x)=˛0, y > x,

(1 − a) ax − y, y [ x.
(2.7)

Then, according to the Lindström–Gessel–Viennot method (29–31) (see also
ref. 32) or the Karlin–McGregor theorem, (33, 34) the weight of non-inter-
secting paths of n particles which ends at xM

i =1 − i is written in a deter-
minantal form,

wn, M(x̄)= D
M − 1

r=0
det(fr, r+1(x r

i , x r+1
j ))n

i, j=1, (2.8)

with the restriction xM
i =1 − i. When c=1, there is no other constraint;

when c=0, there is an additional restriction, x0
2i=x0

2i − 1 − 1 for i=1,
2,..., N/2. The weight of the multi-layer PNG model is obtained by taking
the n Q . limit with N fixed. But if we take the limit n Q . at this stage,
we have to deal with determinants of infinite dimensional matrices which
would make our arguments below more involved without changing the
results. Thus, for simplicity of the treatment, we approximate the weight of
the multi-layer PNG model by (2.8) for the moment and take the limit
n Q . afterwards when it becomes easy. One might think that the weight in
(2.8) is the same for all n which is larger than or equal to N since at time
t=2N at most N paths are not straight as remarked above. But the weight
in (2.8) with finite n is slightly different from the weight of the multi-layer
PNG model because some configurations contained in (2.8) are not allowed
in the multi-layer PNG model where there are infinitely many particles.
The simple determinantal expression in (2.8) allows us to perform a
detailed analysis of the model. If we took diagonal parameters to be more
general as in (2.4), i.e., for general value of c, the expression would become
more complicated.

For later use, we introduce the generating function of fr, r+1,

f2u(z)= C
k ¥ Z

f2u, 2u+1(k) zk=
1 − a

1 − az
, (2.9)

f2u − 1(z)= C
k ¥ Z

f2u − 1, 2u(k) zk=
1 − a

1 − a/z
. (2.10)

Let us denote the Fourier coefficient of a function a(z) as â(k) like

a(z)= C
k ¥ Z

â(k) zk. (2.11)
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For instance one sees

f2u, 2u+1(x, y)=f̂2u(y − x), (2.12)

f2u − 1, 2u(x, y)=f̂2u − 1(y − x). (2.13)

In addition, for a product,

fr1, r2
(z)= D

r2

l=r1

fl(z), (2.14)

the Fourier coefficient,

fr1, r2
(x, y)=f̂r1, r2

(y − x), (2.15)

represents the transition weight of a particle between (r1, x) and (r2, y).
Notice that when r1=r2=r one has

fr, r(x, y)=dxy. (2.16)

Before going to the next section, a remark is in order. Although we
have employed the situation where the geometric random variables are
given by a single parameter q, up to some point, it is easy to generalize our
discussions to the case where

P[w(i, j)=k]=(1 − a iaj)(a iaj)k, 1 [ j < i, (2.17)

P[w(i, i)=k]=˛ (1 − a i) ak
i , c=1,

dk0, c=0,
1 [ i, (2.18)

with 0 < a i < 1 for all i. Then (2.9), (2.10) are replaced by

f2u(z)=
1 − aN+u+1

1 − aN+u+1z
, (2.19)

f2u − 1(z)=
1 − aN − u+1

1 − aN − u+1/z
, (2.20)

with the transition weight of a particle again given by (2.12), (2.13). It
should be noted that our free parameters are only aj’s; for the case in
ref. 18, there are two sets of free parameters aj, bj.
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3. FREDHOLM DETERMINANT AND KERNEL

Let us consider the weight of non-intersecting paths given by

wn, M(x̄)= D
M − 1

r=0
det(fr, r+1(x r

i , x r+1
j ))n

i, j=1, (3.1)

where xM
i (i=1, 2,..., n) is fixed. As for x0

i , there is no restriction. This is
the main difference between our model and the model in ref. 19 in which x0

i

is also fixed. The matrix element fr, r+1(x r
i , x r+1

j ) is the transition weight of
a particle between (r, x r

i ) and (r+1, x r+1
j ). Our main focus is on the c=1

case of the PNG model with (2.6), (2.7), but the results of this section do
not depend on a specific choice of f. For instance, when particles can hop
only to nearest neighbor sites for each time, the process is nothing but the
vicious walks studied in refs. 35–37. Hence our discussions below can
immediately be applied to the problems as well.

The partition function is defined as

Zn, M=
1

(n!)M C
x̄

wn, M(x̄). (3.2)

The probability of the non-intersecting paths reads

pn, M(x̄)=
1

(n!)M Zn, M
wn, M(x̄). (3.3)

Let g(r, x) (r=1,..., M) be some function. In this section, we show

Proposition 3.1.

C
x̄

D
M − 1

r=0
D

n

j=1
(1+g(r, x r

j )) pn, M(x̄)=`det(1+K1 g), (3.4)

where the determinant on the right hand side is the Fredholm determinant,

det(1+K1 g)= C
.

k=0

1
k!

C
M

r1=1
C
x1

C
j1=1, 2

· · · C
M

rk=1
C
xk

C
jk=1, 2

g(r1, x1) · · · g(rk, xk)

× det(K1(rl, xl; rlŒ, xlŒ)jl, jlŒ
)k

l, lŒ=1, (3.5)

and K1 is the 2 × 2 matrix kernel,

K1(r1, x1; r2, x2)=rS1(r1, x1; r2, x2) D1(r1, x1; r2, x2)

I1(r1, x1; r2, x2) S1(r2, x2; r1, x1)
s , (3.6)
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with the matrix elements being

S1(r1, x1; r2, x2)=S̃1(r1, x1; r2, x2) − fr1, r2
(x1, x2), (3.7)

S̃1(r1, x1; r2, x2)=− C
n

i, j=1
fr1, M(x1, xM

i )(A−1
1 )i, j G1(r2, x2; M, xM

j ), (3.8)

I1(r1, x1; r2, x2)=Ĩ1(r1, x1; r2, x2) − G1(r1, x1; r2, x2), (3.9)

Ĩ1(r1, x1; r2, x2)=− C
n

i, j=1
G1(r1, x1; M, xM

i )(A−1
1 )i, j G1(r2, x2; M, xM

j ),
(3.10)

D1(r1, x1; r2, x2)= C
n

i, j=1
fr1, M(x1, xM

i )(A−1
1 )i, j fr2, M(x2, xM

j ). (3.11)

Here

(A1)ij= C
y1, y2

sgn(y2 − y1) f0, M(y1, xM
i ) f0, M(y2, xM

j ), (3.12)

G1(r1, x1; r2, x2)= C
y1, y2

sgn(y2 − y1) f0, r1
(y1, x1) f0, r2

(y2, x2). (3.13)

The expression for general K1(ri, xi; rj, xj) (i, j=1, 2,..., M) has the same
form as K1(r1, x1; r2, x2).

Remark. The subscript 1 refers to the fact that this case is related to
the orthogonal-unitary transition in random matrix theory. If we take
g(r, x)=−qJr

(x) (r=1, 2,..., M), where qJr
is the characteristic function

of Jr, (3.4) gives the probability that there is no particle on J1 × · · · × JM. It
should also be remarked that at this stage the infinite particles limit is
taken easily. One only replaces the summation, ;n

i, j=1, in (3.8), (3.10),
(3.11) with ;.

i, j=1.

Proof. We derive (3.4) by generalizing the methods of refs. 19
and 38. Let us define

Zn, M[g]=
1

(n!)M C
x̄

D
M − 1

r=0
D

n

j=1
(1+g(r, x r

j )) wn, M(x̄). (3.14)

Remark Zn, M[0]=Zn, M so that

C
x̄

D
M − 1

r=0
D

n

j=1
(1+g(r, x r

j )) pn, M(x̄)=
Zn, M[g]
Zn, M[0]

. (3.15)
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By repeated use of the Heine identity,

1
n!

C
x

det(fi(xj))n
i, j=1 det(ji(xj))n

i, j=1=det 1C
X

fi(X) jj(X)2
n

i, j=1
,

(3.16)

one has

Zn, M[g]

= C
x0

1 > · · · > x0
n

det 1 C
X1,..., XM − 1

(1+g(0, x0
i )) f0, 1(x0

i , X1)(1+g(1, X1))

· · · fM − 2, M − 1(XM − 2, XM − 1)(1+g(M − 1, XM − 1)) fM − 1, M(XM − 1, xM
j )2

n

i, j=1
.

(3.17)

Now, using another identity, (38, 39)

1 C
x1 > · · · > xn

det(fi(xj))n
i, j=1

22

=det 1 C
y1, y2

sgn(y2 − y1) fi(y1) fj(y2)2
n

i, j=1
,

(3.18)

one finds

Zn, M[g]2=det 1 C
y1, y2

sgn(y2 − y1) C
X1,..., XM − 1

(1+g(0, y1))

× f0, 1(y1, X1) · · · fM − 1, M(XM − 1, xM
i )

× C
X̃1,..., X̃M − 1

(1+g(0, y2)) f0, 1(y2, X̃1) · · · fM − 1, M(X̃M − 1, xM
j )2

n

i, j=1

=det 1 C
y1, y2

sgn(y2 − y1) C
X0,..., XM − 1

f0, 0(y1, X0)

× (1+g(0, X0)) f0, 1(X0, X1) · · · fM − 1, M(XM − 1, xM
i )

× C
X̃0,..., X̃M − 1

f0, 0(y2, X̃0)(1+g(0, X̃0))

× f0, 1(X̃0, X̃1) · · · fM − 1, M(X̃M − 1, xM
j )2

n

i, j=1
. (3.19)
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For the second equality we used f0, 0(x, y)=dx, y. We divide the (i, j)
element of the matrix in the above determinant into four parts with or
without factors of the form g(r, Xr) or g(r̃, X̃r). We have

Zn, M[g]2=det((A1)i, j+(A(1)
1 )i, j+(A(2)

1 )i, j+(A(3)
1 )i, j)

n
i, j=1, (3.20)

where (A1)i, j is already defined in (3.12) and

(A (1)
1 )i, j= C

y1, y2

sgn(y2 − y1) C
M

l=1

C
0 [ r1 < · · · < rl < M

C
X1,..., Xl

f0, r1
(y1, X1)

× D
l − 1

s=1

g(rs, Xs) frs, rs+1
(Xs, Xs+1) · g(rl, Xl) frl, M(Xl, xM

i ) · f0, M(y2, xM
j ),

(3.21)

(A (2)
1 )i, j= C

y1, y2

sgn(y2 − y1) f0, M(y1, xM
i ) C

M

l=1

C
0 [ r̃1 < · · · < r̃l < M

C
X̃1,..., X̃l

f0, r̃1
(y2, X̃1)

× D
l − 1

s=1

g(r̃s, X̃s) fr̃s, r̃s+1
(X̃s, X̃s+1) · g(r̃l, X̃l) fr̃ l , M(X̃l, xM

j ), (3.22)

(A (3)
1 )i, j= C

y1, y2

sgn(y2 − y1) C
M

l=1

C
0 [ r1 < · · · < rl < M

C
X1,..., Xl

f0, r1
(y1, X1)

× D
l − 1

s=1

g(rs, Xs) frs, rs+1
(Xs, Xs+1) · g(rl, Xl) frl, M(Xl, xM

i )

× C
M

m=1

C
0 [ r̃1 < · · · < r̃m < M

C
X̃1,..., X̃m

f0, r̃1
(y2, X̃1)

× D
m − 1

s=1

g(r̃s, X̃s) fr̃s, r̃s+1
(X̃s, X̃s+1) · g(r̃m, X̃m) fr̃m, M(X̃m, xM

j ). (3.23)

Let us define

j(r1, x1; r2, x2)=g(r1, x1) fr1, r2
(x1, x2), (3.24)

j̃(r1, x1; r2, x2)=fr1, r2
(x1, x2) g(r2, x2), (3.25)
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and

fi(r, x)=fr, M(x, xM
i ), (3.26)

(G1)i (r, x)=G1(r, x; M, xM
i ), (3.27)

ki(r, x)= C
M

l=1
C

r2,..., rl

C
X2,..., Xl

fr, r2
(x, X2)

× D
l − 1

s=2
j(rs, Xs; rs+1, Xs+1) · j(rl, Xl; M, xM

i ). (3.28)

Then (A (1)
1 )i, j can be rewritten as

(A (1)
1 )i, j= C

M

l=1
C

M − 1

r1=0
· · · C

M − 1

rl=1
C

X1,..., Xl

G1(r1, X1; M, xM
j ) g(r1, X1) · fr1, r2

(X1, X2)

× D
l − 1

s=2
j(rs, Xs; rs+1, Xs+1) · j(rl, Xl; M, xM

i )

=C
r, x

g(r, x) ki(r, x) G1(r, x; M, xM
j )

=C
r, x

gki · (G1)j. (3.29)

In the last expression, the dependence on r, x is omitted for notational
simplicity. Noticing the antisymmetry of G1,

G1(r1, x1; r2, x2)=−G1(r2, x2; r1, x1), (3.30)

we can also rewrite (A1) (2)
i, j and (A1) (3)

i, j as

(A(2)
1 )i, j=−C

r, x
gkj · (G1)i, (3.31)

(A(3)
1 )i, j=−C

r, x
gkj · G1(gki), (3.32)

where we used the notation,

(G1 f)(r, x)= C
r1, x1

G1(r, x; r1, x1) f(r1, x1). (3.33)
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Hence we find

Zn, M[g]2=det 1 (A1)i, j+C
r, x

(gki · (G1)j − gkj · (G1)i − gkj · G1(gki))2
n

i, j=1
.

(3.34)

In view of (3.15), we divide this by

Zn, M[0]2=det A1. (3.35)

In the determinant this corresponds to multiplying by A−1
1 , say from the

left. Let gi=;j (A−1
1 )i, j kj, Yi=;j (A−1

1 )i, j (G1)j. Then

1Zn, M[g]
Zn, M[0]

22

=det 1di, j+C
r, x

(ggi · (G1)j − gkj · Yi − gkj · G1(ggi))2
n

i, j=1
.

(3.36)

One notices that, if one introduces

B(i; r, x)=(−gYi − gG1(ggi), ggi), C(r, x; i)=1 ki

(G1)i

2 , (3.37)

this is equal to

det 1di, j+C
r, x

B(i; r, x) C(r, x; j)2
n

i, j=1
=det(1+BC). (3.38)

Now we use a simple fact

det(1+BC)=det(1+CB). (3.39)

The determinant on the left hand side is the determinant of a matrix of
finite rank, whereas the one on the right hand side is the Fredholm deter-
minant. We see

det(1+CB)

=det r 1 − ; i ki é gYi − ; i ki é gG1(ggi) ; i ki é ggi

−; i (G1)i é gYi − ; i (G1)i é gG1(ggi) 1+; i (G1)i é ggi

s ,

(3.40)
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where we used the notation a é b for the operator with kernel of the form
a(r1, x1) b(r2, x2). The matrix in the determinant may be rewritten as a
product of two matrices, leading to

det Rr 1 − ; i ki é gYi ; i ki é ggi

− ; i (G1)i é gYi − G1 g 1+; i (G1)i é ggi

sr 1 0

G1 g 1
sS . (3.41)

The determinant of the right matrix is one, so that this equals

det R1+r − ; i ki é gYi ; i ki é ggi

− ; i (G1)i é gYi − G1 g ; i (G1)i é ggi

sS . (3.42)

Let us remember the definition of ki in (3.28) and notice

ki= C
M

l=1
j̃g(l − 1) f fi=(1 − j̃)−1 f fi, (3.43)

gki= C
M

l=1
jg(l − 1) f (gfi)=(1 − j)−1 f (gfi), (3.44)

where

(f1 f f2)(r1, x1; r2, x2)=C
r, x

f1(r1, x1; r, x) f2(r, x; r2, x2). (3.45)

The determinant we are considering is now

det R1+r (1 − j̃)−1 0

0 1
sr − ; i fi é gYi ; i fi é g(A−1

1 f)i

− ; i (G1)i é gYi − G1 g ; i (G1)i é g(A−1
1 f)i

s

×r1 0

0 (1 − tj)−1
sS . (3.46)

Multiplying from the left by

1=det r1 − j̃ 0

0 1
s (3.47)

and from the right by

1=det r1 0

0 1 − tj
s , (3.48)
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one gets

1Zn, M[g]
Zn, M[0]

22

=det Rr1 − j̃ 0

0 1 − tj
s

+r − ; i, j fi é (A−1
1 )i, j (G1)j ; i, j fi é (A−1

1 )i, j fj

− ; i, j (G1)i é (A−1
1 )i, j (G1)j − G1 ; i, j (G1)i é (A−1

1 )i, j fj

s gS

=det R1+r − ; i, j fi é (A−1
1 )i, j (G1)j − f ; i, j fi é (A−1

1 )i, j fj

− ; i, j (G1)i é (A−1
1 )i, j (G1)j − G1 ; i, j (G1)i é (A−1

1 )i, j fj − tf
s gS .

(3.49)

Recalling the definitions of fi and (G1)i in (3.26) and (3.27), we see that
(3.4) holds. L

4. SCALING LIMIT

In this section we consider the scaling limit, where the universal prop-
erties of the model are expected to appear. The strength of the external
source is taken to be c=1.

4.1. Generating Functions

To study the asymptotics of the kernel, we compute the generating
functions of S̃1, Ĩ1, D1.

First let us recall some basic facts about a Toeplitz matrix. (40) A Toeplitz
matrix is a matrix A of the form,

A=|a0 a−1 a−2 · · ·

a1 a0 a−1

a2 a1 a0 z

x z z

} . (4.1)

It is useful to define a function,

a(z)= C
k ¥ Z

akzk, (4.2)
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which is called the symbol of the Toeplitz matrix A. Conversely, for a given
function a(z), set ak=â(k), the Fourier coefficient of the symbol a(z).
Then one can define the corresponding Toeplitz matrix (4.1), which will be
denoted by T(a). The inverse of A can be given in a compact fashion, if the
symbol a(z) has winding number zero and is Wiener–Hopf factorizable as

a(z)=a+(z) a− (z) (4.3)

with

a+(z)= C
.

k=0
â+(k) zk, (4.4)

a− (z)= C
.

k=0
â− (k) z−k. (4.5)

In fact for a factorization (4.3) one has

A=T(a)=T(a− ) T(a+). (4.6)

In addition, the inverse of the matrix T(a±) is simply given by

T(a±)−1=T 1 1
a±

2 . (4.7)

Hence the inverse of the matrix A is

A−1=T 1 1
a+

2 T 1 1
a−

2 . (4.8)

To obtain the generating functions of S̃1, Ĩ1, D1, we need the inverse of
the matrix A1 (3.12). As remarked below (3.13), for the multi-layer PNG
model, the matrix A1 should be taken to be an infinite dimensional one,
which turns out to be a Toeplitz matrix. If we set

(A1)ij=â(i − j), (4.9)

the symbol is computed as

a1(z)= C
k ¥ Z

â(k) zk

= C
k, y1, y2

f̂0, M(1 − k − y1) z−1+k+y1 · sgn(y2 − y1) zy2 − y1 · f̂0, M(1 − y2) z1 − y2

=f0, M
11

z
2 s1(z) f0, M(z), (4.10)
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where

s1(z)= C
k ¥ Z

sgn(k) zk. (4.11)

In the second equality of (4.10), we use (2.15) and (3.12). The series in
(4.11) is divergent for all z and the formula (4.8) does not hold as it is in
this case. But the difficulty can be overcome fairly easily. Let us define

s (1)
1+(z)=

1+z
1 − z

, s (1)
1 −(z)=1, (4.12)

s (2)
1+(z)=1, s (2)

1 −(z)=−
1+1/z
1 − 1/z

, (4.13)

where s (1)
1+ (resp. s (2)

1 − ) is assumed to be expanded in terms of z (resp. 1/z);

s (1)
1+(z)=lim

E a 0

1+e−Ez
1 − e−Ez

, s (2)
1 −(z)=−lim

E a 0

1+e−E/z
1 − e−E/z

. (4.14)

One notices that s1(z) can be written as

s1(z)=1
2 {s (1)

1+(z) s (1)
1 −(z)+s(2)

1+(z) s (2)
1 −(z)}. (4.15)

We also define

a (i)
1+(z)=f0, M; −

11
z
2 f0, M; +(z) s (i)

1+(z), (4.16)

a (i)
1 −(z)=f0, M; +

11
z
2 f0, M; −(z) s (i)

1 −(z), (4.17)

for i=1, 2. Then the inverse A−1
1 is given by

A−1
1 =

1
2
3T 1 1

a (1)
1+

2 T 1 1
a (1)

1 −

2+T 1 1
a (2)

1+

2 T 1 1
a (2)

1 −

24 , (4.18)

which is the substitute for (4.8). This formula is derived in Appendix A.
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Now one can compute the generating function,

C
.

i, j=1
z1 − i

1 (A−1
1 )i, j z j − 1

2

= C
.

k=1

1
2
3 C

i ¥ Z

z−i+k
1 (1/a(1)

1+)5 (i − k) C
j ¥ Z

(1/a(1)
1 −)5 (k − j) z j − k

2

+ C
i ¥ Z

z−i+k
1 (1/a(2)

1+)5 (i − k) C
j ¥ Z

(1/a(2)
1 −)5 (k − j) z j − k

2
41z2

z1

2k − 1

=
1

1 − z2/z1

1
2
3 1

a (1)
1+

1 1
z1

2 a (1)
1 −

1 1
z2

2
+

1

a (2)
1+

1 1
z1

2 a (2)
1 −

1 1
z2

2
4

=
z1

z1 − z2

1

f0, M; −(z1) f0, M; +
1 1

z1
2 f0, M; +(z2) f0, M; −

1 1
z2

2

×
1
2
3 1

s (1)
1+

1 1
z1

2 s (1)
1 −

1 1
z2

2
+

1

s (2)
1+

1 1
z1

2 s (2)
1 −

1 1
z2

2
4 , (4.19)

which is valid for |z1 | > |z2 |. In the first equality we use a fact that
(1/a(i)

1+)5 (k)=0 for k < 0 and (1/a(i)
1 −)5 (k)=0 for k > 0 (i=1, 2).

We also introduce the generating function of the function G1 in (3.13).
Note that as a function of x1, x2, G1 only depends on the difference x1 − x2,
so that we can set

G1(r1, x1; r2, x2)=(Ĝ1)r1, r2
(x1 − x2). (4.20)

Then one has

(G1)r1, r2
(z)= C

k ¥ Z

(Ĝ1)r1, r2
(k) zk=f0, r1

(z) s1
11

z
2 f0, r2

11
z
2

=−f0, r1
(z) s1(z) f0, r2

11
z
2 . (4.21)

With these preparations, calculations of the generating functions of
S̃1, Ĩ1, D1 are not difficult. We have
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S2 1(r1, z1; r2, z2)

= C
x1, x2 ¥ Z

S̃1(r1, x1; r2, x2) zx1
1 z−x2

2

=− C
x1, x2

C
i, j

f̂r1, M(1 − i − x1) z−1+i+x1
1 · z1 − i

1 (A−1
1 )i, j z j − 1

2

· (Ĝ1)r2, M (x2 − 1+j) z−x2+1 − j
2

=−fr1, M
1 1

z1

2 · C
i, j

z1 − i
1 (A−1

1 )i, j z j − 1
2 · (G1)r2, M

1 1
z2

2

=
z1

z1 − z2

fr1, M; −
1 1

z1
2 f0, r2; +

1 1
z2

2 f0, M; −(z2)

f0, M; −(z1) f0, r1; +
1 1

z1
2 fr2, M; −

1 1
z2

2

1
2
3 s (1)

1+
1 1

z2
2

s (1)
1+

1 1
z1

2
+

s (2)
1+

1 1
z2

2

s (2)
1+

1 1
z1

2
4 ,

=
(1 − a)2(u2 − u1) (1 − a/z1)N+u1 (1 − az2)N − u2

(1 − az1)N − u1 (1 − a/z2)N+u2

z1

z1 − z2

31+
z1 − z2

(1+z1)(z2 − 1)
4 ,

(4.22)

Ĩ1(r1, z1; r2, z2)

= C
x1, x2 ¥ Z

Ĩ1(r1, x1; r2, x2) zx1
1 z−x2

2

=−(G1)r1, M (z1) · C
i, j

z1 − i
1 (A−1

1 )i, j z j − 1
2 · (G1)r2, M

1 1
z2

2

=
z1

z1 − z2

f0, r1; +(z1) f0, M; −
1 1

z1
2 f0, r2; +

1 1
z2

2 f0, M; −(z2)

fr1, M; −(z1) fr2, M; −
1 1

z2
2

×
1
2
3 s (1)

1 −
1 1

z1

2 s (1)
1+
1 1

z2

2+s (2)
1 −
1 1

z1

2 s (2)
1+
1 1

z2

24 ,

=
(1 − a)2(u1+u2) (1 − a/z1)N − u1 (1 − az2)N − u2

(1 − az1)N+u1 (1 − a/z2)N+u2

z1

z1 − z2

31
2

z2+1
z2 − 1

−
1
2

1+z1

1 − z1

4 ,

(4.23)
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D1(r1, z1; r2, z2)

= C
x1, x2 ¥ Z

D(r1, x1; r2, x2) zx1
1 z−x2

2

=−fr1, M
1 1

z1

2 · C
i, j

z1 − i
1 (A−1

1 )i, j z j − 1
2 · fr2, M(z2)

=
z1

z1 − z2

fr1, M; −
1 1

z1
2 fr2, M; −(z2)

f0, M; −(z1) f0, r1; +
1 1

z1
2 f0, r2; +(z2) fr2, M; −

1 1
z2

2

×
1
2
3 1

s (1)
1+

1 1
z1

2 s (1)
1 −

1 1
z2

2
+

1

s (2)
1+

1 1
z1

2 s (2)
1 −

1 1
z2

2
4

=
(1 − a/z1)N+u1 (1 − az2)N+u2

(1 − a)2(u1+u2) (1 − az1)N − u1 (1 − a/z2)N − u2

z1

z1 − z2

31
2

z1 − 1
z1+1

−
1
2

1 − z2

1+z2

4 .

(4.24)
In the last expressions of these, we have set ri=2ui for i=1, 2.

4.2. Bulk

We are now in a position to study the asymptotic behaviors of the
model. The thermodynamic limit shape is already known to be

h(r=2b0N, t=2N)/N ’
2a

1 − a2 (a+`1 − b2
0), (4.25)

where 0 < b0 < 1 is fixed. (41) As for the fluctuation around this limit shape,
the KPZ theory tells us that the correlation survives for O(N1/3) along the
height direction and O(N2/3) along the r direction.

Let us define the scaled height variable as

HN(y, b0)=
h(r=2b0N+2c(b0) N

2
3 y, t=2N) − a 1b0+c(b0) y

N1/3
2 N

d(b0) N
1
3

, (4.26)

where

a(b)=
2a

1 − a2 (a+`1 − b2), (4.27)

d(b)=
a

1
3

(1 − a2)(1 − b2)
1
6
(`1+b+a `1 − b)

2
3 (`1 − b+a `1+b)

2
3, (4.28)

c(b)=a− 1
3(1 − b2)

2
3 (`1+b+a `1 − b)

1
3 (`1 − b+a `1+b)

1
3. (4.29)
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Remark that a(b) just comes from the limit shape (4.25) whereas d(b) and
c(b) are taken so that the results become simple. In this section, we show
that the fluctuation of the model in the bulk is described by the Airy pro-
cess. (14, 19) Namely, we show

Proposition 4.1.

lim
N Q .

P[HN(y1, b0) [ s1,..., HN(ym, b0) [ sm]=det(1+K2G). (4.30)

The determinant on the right hand side is the Fredholm determinant,

det(1+K2G)= C
.

k=0

1
k!

C
m

y1=1
F dt1 · · · C

m

yk=1
F dtk G(y1, t1) · · ·G(yk, tk)

× det(K2(yl, tl; ylŒ, tlŒ))k
l, lŒ=1, (4.31)

where G(yj, t)=−q(sj, .)(x) ( j=1, 2,..., m) and K2 is a scalar kernel, for
which a representative element is given by

K2(y1, t1; y2, t2)=K22(y1, t1; y2, t2) − Fy1, y2
(t1, t2), (4.32)

with

K22(y1, t1; y2, t2)=F
.

0
dl e−l(y1 − y2) Ai(t1+l) Ai(t2+l), (4.33)

Fy1, y2
(t1, t2)=˛0, y1 \ y2,

>.

−. dl e−l(y1 − y2) Ai(t1+l) Ai(t2+l), y1 < y2.

(4.34)

Remark. The kernel (4.32) is called the extended Airy kernel and had
already appeared in the context of Dyson’s Brownian motion model. (42, 43)

We also remark that some properties of the Airy process have been dis-
cussed in refs. 14, 19, and 44–46. For the special case of a single time, we
have

lim
N Q .

P[HN(y, b0) [ s]=F2(s), (4.35)

where F2(s) is the GUE Tracy–Widom distribution. (20) In the language of
the last passage percolation, (4.35) means that the fluctuation of the last
passage time at an off-diagonal point is described by the GUE Tracy–
Widom distribution. For the nonsymmetric case, the statement has been
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already established in ref. 6. But for our symmetric case, this has not seem
to be shown although it was already expected based on a physical argu-
ment in ref. 7. Remember also that the fluctuation at an off-diagonal point
has not been handled by the techniques using the Riemann–Hilbert method.(25)

Proof. Let us derive (4.30). We first remark that (4.33) has a double
contour integral representation,

K22(y1, t1; y2, t2)=−
1

4p2 F
Im w1=g1

dw1 F
Im w2=g2

dw2
e it1w1+it2w2+ i

3 (w3
1+w3

2)

y2 − y1+i(w1+w2)
,

(4.36)

when g1+g2+y1 − y2 > 0, g1, g2 > 0, and that (4.34) can be computed as

Fy1, y2
(t1, t2)=

1

`4p(y2 − y1)
e−

(t2 − t1)2

4(y2 − y1)
− 1

2 (y2 − y1)(t1+t2)+ 1
12 (y2 − y1)3

(4.37)

when y2 > y1. These are already given in ref. 19.
Using the generating functions in the previous subsection, we get the

double contour integral formula for S̃1, Ĩ1, D1,

S̃1(r1, x1; r2, x2)=
1

(2pi)2 F
CR1

dz1

zx1+1
1

F
CR2

dz2 zx2 − 1
2 S2 1(r1, z1; r2, z2), (4.38)

Ĩ1(r1, x1; r2, x2)=
1

(2pi)2 F
CR1

dz1

zx1+1
1

F
CR2

dz2 zx2 − 1
2 Ĩ1(r1, z1; r2, z2), (4.39)

D1(r1, x1; r2, x2)=
1

(2pi)2 F
CR1

dz1

zx1+1
1

F
CR2

dz2 zx2 − 1
2 D1(r1, z1; r2, z2). (4.40)

Here CR denotes a contour enclosing the origin anticlockwise with radius R.
We have taken R1 > R2 to agree with the computation in (4.19). For Ĩ1,
exchanging the radius of the contours of z1, z2 gives

Ĩ1(r1, x1; r2, x2)

=
1

(2pi)2 F
CR2

dz1

zx1+1
1

F
CR1

dz2 zx2 − 1
2 Ĩ1(r1, z1; r2, z2)

−
1

2pi
F

CR2

dz2 zx2 − x1 − 1
2 (G1)r2, r1

1 1
z2

2

=
1

(2pi)2 F
CR2

dz1

zx1+1
1

F
CR1

dz2 zx2 − 1
2 Ĩ1(r1, z1; r2, z2)+G1(r1, x1; r2, x2).

(4.41)
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In the first equality the second term on the right hand side appears from
the contribution of a pole at z1=z2. Hence one gets the double contour
integral representation for I1,

I1(r1, x1; r2, x2)=
1

(2pi)2 F
CR2

dz1

zx1+1
1

F
CR1

dz2 zx2 − 1
2 Ĩ1(r1, z1; r2, z2). (4.42)

Let us first consider the asymptotics of S̃1. Since we can follow the
discussions in ref. 19 for a large part, we omit details and state the main
steps. If we write

gm, b(z)=(1+b) log(z − a) − (1 − b) log(1 − az) − (m+b) log z, (4.43)

we have

S̃1(r1=2u1, x1; r2=2u2, x2)

=
(1 − a)2(u2 − u1)

(2pi)2 F
CR1

dz1

z1
F

CR2

dz2

z2

zx2 − N(m2 − 1)
2

zx1 − N(m1 − 1)
1

eN(gm1, b1
(z1)+gm2, b2

(1/z2))

×
z1

z1 − z2

31+
z1 − z2

(1+z1)(z2 − 1)
4 , (4.44)

where b1=u1/N, b2=−u2/N. m1, m2 are arbitrary constants at this stage.
We would like to apply the saddle point method to this integral. In general
for each value of m, there are two critical points z±

c =p(m, b) ±
`p(m, b)2 − q(m, b) with

p(m, b)=
m(1+a2) − (1 − a2)

2a(m − b)
, (4.45)

q(m, b)=
m+b

m − b
. (4.46)

Since we are considering the scaling in (4.26), we will set

xi=Na(bi)+d(b0) N
1
3 ti, (4.47)

with ti the scaled space variable. Accordingly we set mi=mc(bi) with

mc(b)=a(b)+1=
1

1 − a2 (1+a2+2a `1 − b2). (4.48)
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For this special value of m, the two critical points, z±
c , merge to the double

critical point pc(b), where g −

mc(b), b(pc(b))=g'

mc(b), b(pc(b))=0, given by

pc(b)=p(mc(b), b)=
`1+b+a `1 − b

`1 − b+a `1+b
. (4.49)

The main contribution to the integral in (4.44) comes from around the
double critical points z1 ’ pc(b1), z2 ’ 1/pc(b2). The paths of integration
may be deformed to

z1=pc(b1)11 −
i

d(b0) N1/3 w1
2 , (4.50)

1
z2

=pc(b2)11 −
i

d(b0) N1/3 w2
2 , (4.51)

where wi=zi+igi with − . < zi < . (i=1, 2) and g1, g2 > 0 are fixed.
For a fixed b0, we take

ri=2ui=2N 1b0+
c(b0) yi

N1/3
2 , (4.52)

where yi is the scaled time variable. To leading order we have

pc(b1)=pc(b0)+p −

c(b0)(b1 − b0)=pc(b0)11+
y1

d(b0) N1/3
2 , (4.53)

pc(b2)=pc(−b0)+p −

c(−b0)(b2+b0)=pc(−b0)11 −
y2

d(b0) N1/3
2 , (4.54)

where

c(b0)=
pc(b0)

p −

c(b0) d(b0)
=

pc(−b0)
p −

c(−b0) d(b0)
(4.55)

is used.
Expanding around z1 ’ pc(b1) to order O(1), one finds

Ngmc(b1), b1
(z1) ’ Ngmc(b1), b1

(pc(b1))+
1
6

g −−−

mc(b1), b1
(pc(b1))1 − i

pc(b1)
d(b0)

w1
23

’ Ngmc(b1), b1
(pc(b1))+

i
3

pc(b0)3

2d(b0)3 g −−−

mc(b0), b0
(pc(b0)) w3

1

=Ngmc(b1), b1
(pc(b1))+

i
3

w3
1 (4.56)
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after some computation. Similarly one gets

Ngmc(b2), b2
(1/z2) ’ Ngmc(b2), b2

(pc(b2))+
i
3

w3
2. (4.57)

Let us denote

l0(b)=gmc(b), b(pc(b))

=2b log(1 − a2)+
1
2

(1+b) log(1+b) −
1
2

(1 − b) log(1 − b)

+
1

1 − a2 (`1 − b+a `1+b)2 log(`1 − b+a `1+b)

−
1

1 − a2 (`1+b+a `1 − b)2 log(`1+b+a `1 − b). (4.58)

Clearly, this is an odd function. Therefore if we expand as

l(b) ’ l0(b0)+l1(b0)(b − b0)+l2(b0)(b − b0)2+l3(b0)(b − b0)3+ · · ·
(4.59)

we have l i(b0)=(−1) i+1 l i(−b0) for i=0, 1, 2,... . Expanding to order
O(1), we have

Ngmc(b1), b1
(pc(b1)) ’ Nl0(b0)+l1(b0) c(b0) N2/3y1

+l2(b0) c(b0)2 N1/3y2
1+l3(b0) c(b0)3 y3

1, (4.60)

Ngmc(b2), b2
(pc(b2)) ’ − Nl0(b0) − l1(b0) c(b0) N2/3y2

− l2(b0) c(b0)2 N1/3y2
2 − l3(b0) c(b0)3 y3

2. (4.61)

Combining (4.50), (4.51) with (4.53), (4.54) gives

z1=pc(b0)11+
1

d(b0) N1/3 (y1 − iw1)2 , (4.62)

1
z2

=pc(−b0)11 −
1

d(b0) N1/3 (y2+iw2)2 , (4.63)

so that

zx2+N(1 − mc(b2))
2

zx1+N(1 − mc(b1))
1

’ (pc(b0)) (t2 − t1) d(b0) N1/3
et2y2 − t1y1+it1w1+it2w2. (4.64)
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In addition, to leading order we have

z1

z1 − z2

31+
z1 − z2

(1+z1)(z2 − 1)
4 ’ −

d(b0) N1/3

y2 − y1+i(w1+w2)
, (4.65)

to which the second term on the left hand side does not contribute.
Finally one obtains

S̃1 ’ (1 − a)2(u2 − u1) (pc(b0)) (t2 − t1) d(b0) N1/3 1
d(b0) N1/3

× el1(b0) c(b0) N2/3(y1 − y2)+l2(b0) c(b0)2 N1/3(y
2
1 − y

2
2)+l3(b0) c(b0)3 (y

3
1 − y

3
2)+t2y2 − t1y1

×
1

4p2 F
Im w1=g1

dw1

× F
Im w2=g2

dw2
1 −

1
y2 − y1+i(w1+w2)

2 e it1w1+it2w2+ i
3 (w3

1+w3
2). (4.66)

We also need the asymptotics of

fr1, r2
(x1, x2)

=
(1 − a)2(u2 − u1)

2pi
F

C1

dz
z

zx2 − x1[(1 − az)(1 − a/z)]u2 − u1

=
(1 − a)2(u2 − u1)

2pi
F

C1

dz
z

zx2 − N(mc(b2) − 1) − x1+N(mc(b1) − 1)eNgmc(b1), b1
(z)+Ngmc(b2), b2

(1/z).
(4.67)

Let us set

z=pc(b0)11+
is

d(b0) N1/3
2 . (4.68)

From (4.53), this can be rewritten as

z ’ pc(b1)11 −
1

d(b0) N1/3 (y1 − is)2 . (4.69)

Expansion around z ’ pc(b1) as in (4.56) gives

Ngmc(b1), b1
(z) ’ Ngmc(b1), b1

(pc(b1)) − 1
3 (y1 − is)3. (4.70)
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Similarly

1
z

’ pc(b2)11+
1

d(b0) N1/3 (y2 − is)2 (4.71)

leads to

Ngmc(b2), b2
11

z
2 ’ Ngmc(b2), b2

(pc(b2))+
1
3

(y2 − is)3. (4.72)

One also finds

zx2 − N(mc(b2) − 1) − x1+N(mc(b1) − 1) ’ (pc(b0))d(b0) N1/3(t2 − t1) e is(t2 − t1). (4.73)

Hence one gets

fr1, r2
(x1, x2) ’ (1 − a)2(u2 − u1) (pc(b0)) (t2 − t1) d(b0) N1/3 1

d(b0) N1/3

× el1(b0) c(b0) N2/3(y1 − y2)+l2(b0) c(b0)2 N1/3(y
2
1 − y

2
2)+l3(b0) c(b0)3 (y

3
1 − y

3
2) −

y3
1
3

+
y3

2
3

×
1

2p
F

.

−.

ds e i(t2 − t1+y
2
1 − y

2
2) s − (y2 − y1) s

2
. (4.74)

For I1, one has

I1(r1=2u1, x1; r2=2u2, x2)

=
(1 − a)2(u1+u2)

(2pi)2 F
CR2

dz1

z1
F

CR1

dz2

z2

zx2 − N(mc(b2) − 1)
2

zx1 − N(mc(b1) − 1)
1

eN(gmc(b1), b1
(z1)+gmc(b2), b2

(1/z2))

×
z1

z1 − z2

31
2

z2+1
z2 − 1

−
1
2

1+z1

1 − z1

4 , (4.75)

where bi=−u i/N. The critical points of z1, z2 are again given by
z1=pc(b1), z2=1/pc(b2). To leading order, the paths are

z1=pc(−b0)11 −
1

d(b0) N1/3 (y1+iw1)2 , (4.76)

1
z2

=pc(−b0)11 −
1

d(b0) N1/3 (y2+iw2)2 , (4.77)
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so that we have

I1 ’ (1 − a)2(u1+u2) pc(−b0)3

(1+pc(−b0))(1 − pc(−b0))3 (pc(b0)) (t1+t2) d(b0) N1/3 1
d(b0)3 N

× e−2Nl0(b0) − l1(b0) c(b0) N2/3(y1+y2) − l2(b0) c(b0)2 N1/3(y
2
1+y

2
2) − l3(b0) c(b0)3 (y

3
1+y

3
2)+t1y1+t2y2

×
1

4p2 F
Im w1=g1

dw1 F
Im w2=g2

dw2(y1 − y2+i(w1 − w2)) e it1w1+it2w2+ i
3 (w3

1+w3
2).

(4.78)

Similarly for D1 one has

D1(r1=2u1, x1; r2=2u2, x2)

=
1

(2pi)2 (1 − a)2(u1+u2) F
CR1

dz1

z1

× F
CR2

dz2

z2

zx2 − N(mc(b2) − 1)
2

zx1 − N(mc(b1) − 1)
1

eN(gmc(b1), b1
(z1)+gmc(b2), b2

(1/z2))

×
z1

z1 − z2

31
2

z1 − 1
z1+1

−
1
2

1 − z2

1+z2

4 , (4.79)

where bi=ui/N. The critical points of z1, z2 are z1=pc(b1), z2=1/pc(b2).
To leading order, the paths are

z1=pc(b0)11+
1

d(b0) N1/3 (y1 − iw1)2 , (4.80)

1
z2

=pc(b0)11+
1

d(b0) N1/3 (y2 − iw2)2 , (4.81)

so that we have

D1 ’ (1 − a)−2(u1+u2) pc(b0)
(1+pc(b0))(1 − pc(b0))3 (pc(b0))−(t1+t2) d(b0) N1/3 1

d(b0)3 N

× e2Nl0(b0)+l1(b0) c(b0) N2/3(y1+y2)+l2(b0) c(b0)2 N1/3(y
2
1+y

2
2)+l3(b0) c(b0)3 (y

3
1+y

3
2) − t1y1 − t2y2

×
1

4p2 F
Im w1=g1

dw1 F
Im w2=g2

dw2(y1 − y2 − i(w1 − w2)) e it1w1+it2w2+ i
3 (w3

1+w3
2).

(4.82)

Now suppose that we substitute the asymptotic expressions (4.66),
(4.74), (4.78), (4.82) into (3.6). Notice that the kernel of the form [a

c
b
d] and
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[ aa
c/b

bb
d/a] give the same value for the determinant and hence that some of

the prefactors in (4.66), (4.74), (4.78), (4.82) have no effect on the value of
the determinant. Moreover, in our scaling limit, the off-diagonal elements,
I1 and D1, vanish due to the difference of order in N. The diagonal ele-
ments are transpose to each other and hence one finds

P[h(r1, 2N) [ X1,..., h(rm, 2N) [ Xm]=`det(1+K1 g)

Q `(det(1+K2G))2=det(1+K2G), (4.83)

where g is g(ri, x)=−qJi
(x) (i=1, 2,..., m), where Ji=(Xi, .) and ri=

2b0N+2c(b0) N2/3yi, Xi=a(b0+c(b0) y i

N1/3 ) N+sid(b0) N1/3 for i=1, 2,..., m.
L

4.3. Near the Origin

In the last subsection, we saw that the fluctuation in the bulk is
described by the Airy process. On the other hand, as already mentioned,
we know that the height fluctuation at the origin is given by the GOE
Tracy–Widom distribution. In this subsection, we are interested in the
crossover between them. Let us define the scaled height variable near the
origin as

HN(y)=
h(r=2cN2/3y, t=M=2N) − aN

dN1/3 +y2, (4.84)

where

a=a(0)=
2a

1 − a
, (4.85)

d=d(0)=
a1/3(1+a)1/3

1 − a
, (4.86)

c=c(0)=
(1+a)

2
3

a
1
3

. (4.87)

The second term in (4.84) comes from the expansion of a(b) in (4.27)
around b=0.

We show that the fluctuation of the model near the origin is described
by the process which gives the orthogonal-unitary transition in random
matrix theory. Namely, we show
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Theorem 4.2.

lim
N Q .

P[HN(y1) [ s1,..., HN(ym) [ sm]=`det(1+K1G), (4.88)

where G(yj, t)=−q(sj, .)(t) ( j=1, 2,..., m) and K1 is the 2 × 2 matrix
kernel, for which a representative element is given by

K1(y1, t1; y2, t2)=rS1(y1, t1; y2, t2) D1(y1, t1; y2, t2)

I1(y1, t1; y2, t2) S1(y2, t2; y1, t1)
s , (4.89)

with the matrix elements being

S1(y1, t1; y2, t2)=S21(y1, t1; y2, t2) − Fy1, y2
(t1, t2), (4.90)

S21(y1, t1; y2, t2)=F
.

0
dl e−l(y1 − y2) Ai(t1+l) Ai(t2+l)

+
1
2

Ai(t1) F
.

0
dl e−ly2 Ai(t2 − l), (4.91)

I1(y1, t1; y2, t2)=−F
.

0
dl e−ly1 Ai(t1 − l) F

.

l

dv e−vy2 Ai(t2 − v)

+F
.

0
dl e−ly2 Ai(t2 − l) F

.

l

dv e−vy1 Ai(t1 − v), (4.92)

D1(y1, t1; y2, t2)=
1
4

F
.

0
dl e−ly1 Ai(t1+l)

d
dl

{e−ly2 Ai(t2+l)}

−
1
4

F
.

0
dl e−ly2 Ai(t2+l)

d
dl

{e−ly1 Ai(t1+l)}. (4.93)

Definition of Fy1, y2
(t1, t2) is already given in (4.34).

Remark. The same kernel appeared in the context of the orthogonal-
unitary transition in ref. 28 and the problem of vicious walks in ref. 37. For
the special case of a fluctuation at y=0, we have

lim
N Q .

P[HN(0) [ s]=F1(s), (4.94)

where F1(s) is the GOE Tracy–Widom distribution. (22) It is remarked that
this result was anticipated in ref. 6 based on the Meixner orthogonal
ensemble representation and was shown in ref. 25. On the other hand, for
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y Q ., I1 and D1 goes to zero. We recover the Airy process, which is con-
sistent with the results of the previous subsection.

Proof. Let us derive (4.88). We first notice that (4.91), (4.92), (4.93)
have double contour integral representation. Assume y1, y2 \ 0 and
g1, g2 > 0. For S21, one has

S21(y1, t1; y2, t2)

=
1

4p2 F
Im w1=g1

dw1 F
Im w2=g2

dw2
1 −

1
y2 − y1+i(w1+w2)

+
1

2(y2+iw2)
2

× e it1w1+it2w2+ i
3 (w3

1+w3
2), (4.95)

where g1+g2+y1 − y2 > 0 and y2 − g2 > 0. For I1,

I1(y1, t1; y2, t2)

=
1

4p2 F
Im w1=g1

dw1

× F
Im w2=g2

dw2
− 1

(y2+iw2)(y1+y2+i(w1+w2))
e it1w1+it2w2+ i

3 (w3
1+w3

2)

− (y1, t1 Y y2, t2), (4.96)

where y1 − g1 > 0, y2 − g2 > 0. For D1,

D1(y1, t1; y2, t2)

=
1

4p2 F
Im w1=g1

dw1 F
Im w2=g2

dw2
y1 − iw1

4(y1+y2 − i(w1+w2))
e it1w1+it2w2+ i

3 (w3
1+w3

2)

− (y1, t1 Y y2, t2), (4.97)

where there is no additional condition on y1, y2, g1, g1. These are easily
obtained by using the integral representation of the Airy function,

Ai(t)=
1

2p
F

Im w=g

dw e itw+i w3

3 . (4.98)

In the following, we show, as N Q .,

S1(r1, x1; r2, x2) ’ d−1N−1/3e (y
3
1 − y

3
2)/3 − t1y1+t2y2S1(y1, t1; y2, t2), (4.99)

I1(r1, x1; r2, x2) ’ e−(y
3
1+y

3
2)/3+t1y1+t2y2I1(y1, t1; y2, t2), (4.100)

D1(r1, x1; r2, x2) ’ d−2N−2/3e (y
3
1+y

3
2)/3 − t1y1 − t2y2D1(y1, t1; y2, t2), (4.101)
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where we set ri=2cN2/3yi, xi=aN+(ti − y2
i ) dN1/3 for i=1, 2. From

these, (4.88) is almost obvious.
Let us first consider the asymptotics of S̃1. Basically one can follow the

same route as in the last subsection with b0=0, but there appear some
simplifications and differences. For instance, (4.62), (4.63) reduce to

z1=1+
1

dN1/3 (y1 − iw1),
1
z2

=1 −
1

dN1/3 (y2+iw2). (4.102)

Then we have

z1

z1 − z2

31+
z1 − z2

(1+z1)(z2 − 1)
4 ’ −

dN1/3

y2 − y1+i(w1+w2)
+

1
2

dN1/3

y2+iw2
. (4.103)

Compare this with (4.65), where the second term on the left hand side was
negligible.

Expansion of G(b) in (4.59) is now simply

G(b)=2 log(1 − a) b+
a

3(1+a)2 b3, (4.104)

so that one has

eNgmc(b1), b1
(pc(b1)) ’ (1 − a)2u1 ey

3
1/3, (4.105)

eNgmc(b2), b2
(pc(b2)) ’ (1 − a)−2u2 e−y

3
2/3, (4.106)

instead of (4.60), (4.61). Asymptotics of f, which is already given in ref. 19,
can be obtained by setting b0=0 in (4.74);

fr1, r2
(x1, x2)=d−1N−1/3e (y

3
2 − y

3
1)/3+t1y1 − t2y2Fy1, y2

(t1, t2). (4.107)

Combining these, we see (4.99) holds.
As for I1, (4.76), (4.77) reduce to

z1=1 −
1

dN1/3 (y1+iw1),
1
z2

=1 −
1

dN1/3 (y2+iw2). (4.108)

Since

z1

z1 − z2

31
2

z2+1
z2 − 1

−
1
2

1+z1

1 − z1

4 ’
d2N2/3

y1+y2+i(w1+w2)
1 − 1

y2+iw2
−

− 1
y1+iw1

2 ,

(4.109)

we see that (4.100) holds.
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Finally, for D1, (4.80), (4.81) reduce to

z1=1+
1

dN1/3 (y1 − iw1),
1
z2

=1+
1

dN1/3 (y2 − iw2). (4.110)

Since

z1

z1 − z2

31
2

z1 − 1
z1+1

−
1
2

1 − z2

1+z2

4 ’
1
4

(y1 − iw1) − (y2 − iw2)
y1+y2 − i(w1+w2)

, (4.111)

we see that (4.101) holds. L

5. MODEL WITHOUT SOURCE AT THE ORIGIN

In this section we study the case where c=0 in (2.4). As already men-
tioned in the introduction, this case corresponds to the PNG model
without the source at the origin. The analysis proceeds in a fairy parallel
way to the orthogonal case. The main difference is that there is a new
restriction on the height lines h i; h2i(0, t)=h2i+1(0, t)+1 (i=0, 1,...,
N/2 − 1) at time t=M=2N.

5.1. Fredholm Determinant and Kernel

We consider the weight of non-intersecting paths of n particles given
by

wn, M(x̄)=det 1 f0, 1(x0
2i − 1, x1

j )
f0, 1(x0

2i − 1 − 1, x1
j )
2

i=1,..., n
2 , j=1,..., n

D
M − 1

r=1
det(fr, r+1(x r

i , x r+1
j ))n

i, j=1,

(5.1)

where n is assumed to be even and xM
i (i=1, 2,..., n) is fixed. This is

equivalent to the weight (2.8) with the restrictions, x0
2i=x0

2i − 1 − 1 for
i=1, 2,..., n/2. The partition function and the probability of the non-
intersecting paths are given by (3.2), (3.3) respectively. Again, our main
focus is on the special case in (2.6), (2.7), but the results of this section do
not depend on a specific choice of f. For instance, when particles can hop
only to nearest neighbor sites for each time, the process is a variant of the
vicious walks with a condition that walkers start in pairs and end at
neighboring sites. (47)
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Under this arrangement, we can show

Proposition 5.1.

C
x̄

D
M − 1

r=0
D

n

j=1
(1+g(r, x r

j )) pn, M(x̄)=`det(1+K4 g), (5.2)

where g is some function. The determinant on the right hand side is the
Fredholm determinant, where K4 is a 2 × 2 matrix kernel,

K4(r1, x1; r2, x2)=rS4(r1, x1; r2, x2) D4(r1, x1; r2, x2)

I4(r1, x1; r2, x2) S4(r2, x2; r1, x1)
s , (5.3)

with the matrix elements being

S4(r1, x1; r2, x2)=S̃4(r1, x1; r2, x2) − fr1, r2
(x1, x2), (5.4)

S̃4(r1, x1; r2, x2)=− C
n

i, j=1
fr1, M(x1, xM

i )(A−1
4 )i, j G4(r2, x2; M, xM

j ), (5.5)

I4(r1, x1; r2, x2)=Ĩ4(r1, x1; r2, x2) − G4(r1, x1; r2, x2), (5.6)

Ĩ4(r1, x1; r2, x2)=− C
n

i, j=1
G4(r1, x1; M, xM

i )(A−1
4 )i, j G4(r2, x2; M, xM

j ),
(5.7)

D4(r1, x1; r2, x2)= C
n

i, j=1
fr1, M(x1, xM

i )(A−1
4 )i, j fr2, M(x2, xM

j ). (5.8)

Here

(A4)ij= C
y1, y2

s(y2 − y1) f0, M(y1, xM
i ) f0, M(y2, xM

j ), (5.9)

G4(r1, x1; r2, x2)= C
y1, y2

s(y2 − y1) f0, r1
(y1, x1) f0, r2

(y2, x2), (5.10)

sij=s(i − j)=di+1, j − di, j+1. (5.11)

Remark. The subscript 4 refers to the fact that this case is related to
the symplectic-unitary transition in random matrix theory. It should also
be remarked that at this stage the infinite particles limit is taken easily. One
only replaces the summation, ;n

i, j=1, in (5.5), (5.7), (5.8) with ;.

i, j=1.
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Proof. As in the orthogonal case, we derive (5.2) by generalizing the
methods of refs. 19 and 38. Using the Heine identity (3.16), the partition
function Zn, M[g] is written as

Zn, M[g]=
1

(n!)M C
x0

det R fg
0, M(x0

2i − 1, xM
j )

fg
0, M(x0

2i − 1 − 1, xM
j )
S

i=1,..., n/2, j=1,..., n
. (5.12)

Here

fg
0, M(x0

i , xM
j )= C

X1,..., XM − 1

(1+g(0, x0
i ))

× f0, 1(x0
i , X1)(1+g(1, X1)) · · · fM − 1, M(XM − 1, xM

j )

=f0, M(x0
i , xM

j )+(f0, r1
· gkj)(x0

i , xM
j ). (5.13)

In the second equality we have used kj defined in (3.28). From (5.12),
(5.13) and the identity, (22, 39)

1 C
x1,..., xn

det(fi(xj) ki(xj))i=1 · · · 2n, j=1 · · · n
22

=((2n)!)2 det 1C
y

(fi(y) kj(y) − fj(y) ki(y))2
2n

i, j=1
, (5.14)

one finds

Zn, M[g]2=det[(A4)i, j+(A(1)
4 )i, j+(A(2)

4 )i, j+(A(3)
4 )i, j]

n
i, j=1, (5.15)

where A4 is defined in (5.9) and

(A (1)
4 )i, j=C

y
[(f0, r1

· gkj)(y, xM
j ) f0, M(y+1, xM

k )

− f0, M(y, xM
k )(f0, r1

· gkj)(y+1, xM
j )]

=C
r, x

gki · (G4)j (5.16)

(A (2)
4 )i, j=C

y
[f0, M(y, xM

j )(f0, r1
· gkk)(y+1, xM

k )

− (f0, r1
· gkk)(y, xM

k ) f0, M(y+1, xM
j )]

=−C
r, x

gkj · (G4)i (5.17)
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(A(3)
4 )i, j=C

y
[(f0, r1

· gkj)(y, xM
j )(f0, r1

· gkk)(y+1, xM
k )

− (f0, r1
· gkk)(y, xM

k )(f0, r1
· gkj)(y+1, xM

j )]

=−C
r, x

gkj · G4(gki). (5.18)

We should notice that the forms of A (1)
4 , A (2)

4 , and A (3)
4 are the same as the

corresponding ones in the orthogonal case, (3.29), (3.31), and (3.32),
respectively. Only difference is that sgn in (3.12) and (3.13) is replaced by s,
(5.11), in (5.9) and (5.10). Thus we can calculate the kernel along the line in
Section 3. The result is

1Zn, M[g]
Zn, M[0]

22

=det 11+5 − ; i, j fi é (A−1
4 )i, j (G4)j − f ; i, j fi é (A−1

4 )i, j fj

− ; i, j (G4)i é (A−1
4 )i, j (G4)j − G4 ; i, j (G4)i é (A−1

4 )i, j fj − tf
6 g2 .

(5.19)

Recalling the definitions of fi and (G4)i, we see that (5.2) holds. L

5.2. Scaling Limit

5.2.1. Generating Functions

The symbol a4(z) of the matrix A4 is computed as

a4(z)=f0, M
11

z
2 s4(z) f0, M(z), (5.20)

where

s4(z)= C
k ¥ Z

s(k) zk=−z+
1
z

. (5.21)

One is unable to use the formula (4.8) as it is since the winding number of
a4(z) is not zero, but the difficulty can be overcome as in the orthogonal
case. Let us notice that s4(z) can be expressed as

s4(z)=1
2 {s (1)

4+(z) s (1)
4 −(z)+s(2)

4+(z) s (2)
4 −(z)}. (5.22)
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with

s (1)
4+(z)=1+z, s (1)

4 −(z)=−1+
1
z

, (5.23)

s (2)
4+(z)=1 − z, s (2)

4 −(z)=1+
1
z

. (5.24)

Then in terms of a (i)
4+, a (i)

4 − for i=1, 2 defined by

a (i)
4+(z)=f0, M; −

11
z
2 f0, M; +(z) s (i)

4+(z), (5.25)

a (i)
4 −(z)=f0, M; +

11
z
2 f0, M; −(z) s (i)

4 −(z), (5.26)

A−1
4 is expressed as

A−1
4 =

1
2
3T 1 1

a (1)
4+

2 T 1 1
a (1)

4 −

2+T 1 1
a (2)

4+

2 T 1 1
a (2)

4 −

24 . (5.27)

The derivation of this formula is almost the same as that of (4.18) and is
omitted. Using the generating functions of A−1

4 and G4,

C
.

i, j=1
z1 − i

1 (A−1
4 )i, j z j − 1

2

=
z1

z1 − z2

1

f0, M; −(z1) f0, M; +
1 1

z1
2 f0, M; +(z2) f0, M; −

1 1
z2

2

×
1
2
3 1

s (1)
4+

1 1
z1

2 s (1)
4 −

1 1
z2

2
+

1

s (2)
4+

1 1
z1

2 s (2)
4 −

1 1
z2

2
4 ,

(G4)r1, r2
(z)=−f0, r1

(z) s4(z) f0, r2
11

z
2 ,

(5.28)

we can calculate the generating functions of S̃4, Ĩ4, D4;

S2 4(r1, z1; r2, z2)

= C
x1, x2 ¥ Z

S̃4(r1, x1; r2, x2) zx1
1 z−x2

2

=
z1

z1 − z2

fr1, M; −
1 1

z1
2 f0, r2; +

1 1
z2

2 f0, M; −(z2)

f0, M; −(z1) f0, r1; +
1 1

z1
2 fr2, M; −

1 1
z2

2

1
2
3 s (1)

4+
1 1

z2
2

s (1)
4+

1 1
z1

2
+

s (2)
4+

1 1
z2

2

s (2)
4+

1 1
z1

2
4 ,

=
(1 − a)2(u2 − u1) (1 − a/z1)N+u1 (1 − az2)N − u2

(1 − az1)N − u1 (1 − a/z2)N+u2

z1

z1 − z2

31+
z1 − z2

z2(1 − z2
1)
4 ,

(5.29)
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Ĩ4(r1, z1; r2, z2)

= C
x1, x2 ¥ Z

Ĩ4(r1, x1; r2, x2) zx1
1 z−x2

2

=
z1

z1 − z2

f0, r1; +(z1) f0, M; −
1 1

z1
2 f0, r2; +

1 1
z2

2 f0, M; −(z2)

fr1, M; −(z1) fr2, M; −
1 1

z2
2

×
1
2
3 s (1)

4 −
1 1

z1

2 s (1)
4+
1 1

z2

2+s (2)
4 −
1 1

z1

2 s (2)
4+
1 1

z2

24 ,

=
(1 − a)2(u1+u2) (1 − a/z1)N − u1 (1 − az2)N − u2

(1 − az1)N+u1 (1 − a/z2)N+u2

z1

z1 − z2

3 − z1+
1
z2

4 , (5.30)

D4(r1, z1; r2, z2)

= C
x1, x2 ¥ Z

D4(r1, x1; r2, x2) zx1
1 z−x2

2

=
z1

z1 − z2

fr1, M; −
1 1

z1
2 fr2, M; −(z2)

f0, M; −(z1) f0, r1; +
1 1

z1
2 f0, r2; +(z2) fr2, M; −

1 1
z2

2

×
1
2
3 1

s (1)
4+

1 1
z1

2 s (1)
4 −

1 1
z2

2
+

1

s (2)
4+

1 1
z1

2 s (2)
4 −

1 1
z2

2
4

=
(1 − a/z1)N+u1 (1 − az2)N+u2

(1 − a)2(u1+u2) (1 − az1)N − u1 (1 − a/z2)N − u2

×
− z1

z1 − z2

31
2

1
z1+1

1
1 − z2

+
1
2

1
1 − z1

1
1+z2

4 . (5.31)

5.2.2. Bulk

In the bulk region, the asymptotic behavior is just the same as in the
orthogonal case.

Proposition 5.2. For the scaled height variable defined by (4.26),
(4.30) holds in the symplectic case as well.

Proof. To show this, we need the asymptotics of S̃4, Ĩ4, and D4 in the
bulk region. Applying the same reasoning as in 4.2, one finds
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S̃4 ’ (1 − a)2(u2 − u1) (pc(b0)) (t2 − t1) d(b0) N1/3 1
d(b0) N1/3

× eG1(b0) c(b0) N2/3(y1 − y2)+G2(b0) c(b0)2 N1/3(y
2
1 − y

2
2)+G3(b0) c(b0)3 (y

3
1 − y

3
2)+t2y2 − t1y1

×
1

4p2 F
Im w1=g1

dw1 F
Im w2=g2

dw2
1 −

1
y2 − y1+i(w1+w2)

2

× e it1w1+it2w2+ i
3 (w3

1+w3
2), (5.32)

I4 ’ (1 − a)2(u1+u2) pc(−b0)3

(1 − pc(−b0)2)
(pc(b0)) (t1+t2) d(b0) N1/3 1

d(b0)3 N

× e−2Nl0(b0) − l1(b0) c(b0) N2/3(y1+y2) − l2(b0) c(b0)2 N1/3(y
2
1+y

2
2) − l3(b0) c(b0)3 (y

3
1+y

3
2)+t1y1+t2y2

×
− 1
4p2 F

Im w1=g1

dw1 F
Im w2=g2

dw2(y1 − y2+i(w1 − w2)) e it1w1+it2w2+ i
3 (w3

1+w3
2),

(5.33)

D4 ’ (1 − a)−2(u1+u2) pc(b0)4

(1 − pc(b0)2)3 (pc(b0))−(t1+t2) d(b0) N1/3 1
d(b0)3 N

× e2Nl0(b0)+l1(b0) c(b0) N2/3(y1+y2)+l2(b0) c(b0)2 N1/3(y
2
1+y

2
2)+l3(b0) c(b0)3 (y

3
1+y

3
2) − t1y1 − t2y2

×
1

4p2 F
Im w1=g1

dw1 F
Im w2=g2

dw2(y1 − y2 − i(w1 − w2)) e it1w1+it2w2+ i
3 (w3

1+w3
2).

(5.34)

Then discussions similar to ones below (4.82) lead to (4.30). L

5.2.3. Near the Origin

Next we show that the fluctuation near the origin is described by the
process which gives the symplectic-unitary transition in random matrix
theory. (28) Namely, if we define the scaled height variable as (4.84), one can
show

Theorem 5.3.

lim
N Q .

P[HN(y1) [ s1,..., HN(ym) [ sm]=`det(1+K4G), (5.35)

where G(yj, t)=−q(sj, .)(t) ( j=1, 2,..., m) and K4 is the 2 × 2 matrix
kernel, for which a representative element is given by

K4(y1, t1; y2, t2)=rS4(y1, t1; y2, t2) D4(y1, t1; y2, t2)

I4(y1, t1; y2, t2) S4(y2, t2; y1, t1)
s , (5.36)
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with the matrix elements being

S4(y1, t1; y2, t2)=S24(y1, t1; y2, t2) − Fy1, y2
(t1, t2), (5.37)

S24(y1, t1; y2, t2)=F
.

0
dl e−l(y1 − y2) Ai(t1+l) Ai(t2+l)

−
1
2

Ai(t2) F
.

0
dl e−ly1 Ai(t1+l), (5.38)

I4(y1, t1; y2, t2)=−F
.

0
dl e−ly1 Ai(t1 − l)

d
dl

{e−ly2 Ai(t2 − l)}

+F
.

0
dl e−ly2 Ai(t2 − l)

d
dl

{e−ly1 Ai(t1 − l)}, (5.39)

D4(y1, t1; y2, t2)=
1
4

F
.

0
dl e−ly1 Ai(t1+l) F

.

l

dv e−vy2 Ai(t2+v)

−
1
4

F
.

0
dl e−ly2 Ai(t2+l) F

.

l

dv e−vy1 Ai(t1+v). (5.40)

Definition of Fy1, y2
(t1, t2) is already given in (4.34).

Remark. For y=0, we have

lim
N Q .

P[HN(0) [ s]=F4(s), (5.41)

where F4(s) is the GSE Tracy–Widom distribution. (22) Notice a notational
difference in refs. 22 and 25. We follow the convention in the latter; our
F4(s) is F4(s)=FBR

4 (s)=FTW
4 (`2 s). The result, (5.41), was shown in

ref. 25; it would also be possible to prove this by using

P[h(0, 2N) [ X]

=
1

Z (4)
N

C
h ¥ N

N
2

max{hj} [ X+N − 1

D
1 [ i < j [ N

2

(h i − hj)2 (h i − hj+1)(hi − hj − 1) D
N
2

i=1
qhi,

(5.42)

and the skew orthogonal polynomials techniques. (48–50) The Meixner
symplectic ensemble representation, (5.42), was not given in ref. 6 but can
be proved similarly if one notices that a symmetric N × N matrix with zero
elements on diagonal and non-negative integer elements on off-diagonal is
mapped to a semistandard Young tableau with all columns of even length
through Knuth correspondence. (51)
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Proof. Derivation of (5.35) is analogous to that of (4.88). Using the
integral representation of the Airy function, (4.98), we have, for S24,

S24(y1, t1; y2, t2)

=
1

4p2 F
Im w1=g1

dw1 F
Im w2=g2

dw2
1 −

1
y2 − y1+i(w1+w2)

−
1

2(y1 − iw1)
2

× e it1w1+it2w2+ i
3 (w3

1+w3
2), (5.43)

where g1+g2+y1 − y2 > 0. For I4,

I4(y1, t1; y2, t2)

=
− 1
4p2 F

Im w1=g1

dw1 F
Im w2=g2

dw2
y2+iw2

(y1+y2+i(w1+w2))
e it1w1+it2w2+ i

3 (w3
1+w3

2)

− (y1, t1 Y y2, t2), (5.44)

where y1+y2 − g1 − g2 > 0. For D4,

D4(y1, t1; y2, t2)

=
1

4p2 F
Im w1=g1

dw1 F
Im w2=g2

dw2
1

4(y1 − iw1)(y1+y2 − i(w1+w2))

× e it1w1+it2w2+ i
3 (w3

1+w3
2) − (y1, t1 Y y2, t2), (5.45)

where there is no additional condition on y1, y2, g1, g2. Then applying the
same method as in 4.3, we can show

S4(r1, x1; r2, x2) ’ d−1N−1/3e (y
3
2 − y

3
1)/3+t1y1 − t2y2S4(y1, t1; y2, t2), (5.46)

I4(r1, x1; r2, x2) ’ d−2N−2/3e (y
3
1+y

3
2)/3 − t1y1 − t2y2d2N2/3I4(y1, t1; y2, t2), (5.47)

D4(r1, x1; r2, x2) ’ e−(y
3
1+y

3
2)/3+t1y1+t2y2D4(y1, t1; y2, t2), (5.48)

from which (5.35) follows. L

6. CONTINUOUS LIMIT

Let us take the limit a Q 0, N Q . with t=aN, fixed. In this limit
time and space become continuous; the time variable t can take any posi-
tive value whereas the scaled space variable is defined to be v=ar/2. The
model is reduced to the standard PNG model in half-space (v \ 0) with an
external source at the origin. As in the discrete case, we extend the space to
the whole space (v ¥ R), putting the symmetry condition on the hight with
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respect to the origin. First we have a flat substrate. At time 0, a nucleation
of a height one occurs at the origin. This step grows laterally in both direc-
tions with unit speed. Above this ground layer there occur other nuclea-
tions with rate two per unit length. The height of a nucleation is always
one. There is an external source at the origin with rate c. As in the discrete
case, one can define the multi-layer version. (14)

It is easy to take this limit at the level of the generating functions. For
the orthogonal case, (4.22), (4.23), (4.24) become

S2 1 ’ e2(v1 − v2)e t(z1 − 1/z1) − v1(z1+1/z1)e t(1/z2 − z2)+v2(z2+1/z2)

×
z1

z1 − z2

31+
z1 − z2

(1+z1)(z2 − 1)
4 , (6.1)

Ĩ1 ’ e−2(v1+v2)e t(z1 − 1/z1)+v1(z1+1/z1)e t(1/z2 − z2)+v2(z2+1/z2)

×
z1

z1 − z2

31
2

z2+1
z2 − 1

−
1
2

1+z1

1 − z1

4 , (6.2)

D2 1 ’ e2(v1+v2)e t(z1 − 1/z1)+v1(z1+1/z1)e t(1/z2 − z2)+v2(z2+1/z2)

×
z1

z1 − z2

31
2

z1 − 1
z1+1

−
1
2

1 − z2

1+z2

4 . (6.3)

Expressions for the symplectic case are given by (6.1), (6.2), (6.3) with the
last factors replaced by the corresponding ones in (5.29), (5.30), (5.31).

The scaling limit can also be studied as in the discrete PNG model.
First the thermodynamic shape is known to be

h(v=b0t, t)/t ’ 2 `1 − b2
0, (6.4)

where 0 < b0 < 1 is fixed. (1) To consider the scaling limit in the bulk, define
the scaled height variable as

HN(y, b0)=
h(v=b0t+c(b0) t

2
3 y, t) − a 1b0+c(b0) y

t1/3
2 t

d(b0) t
1
3

, (6.5)

where

a(b)=2 `1 − b2, (6.6)

d(b)=(1 − b2)
1
6, (6.7)

c(b)=(1 − b2)
7
6. (6.8)
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Then one can show

Proposition 6.1. For the scaled height variable defined by (6.5),
(4.30) holds.

The proof of the Proposition 6.1 is parallel to that in 4.2. The main
difference is that the function gm, b in (4.43) is replaced by a simpler

gm, b(z)=z −
1
z

− b 1z+
1
z
2− m log z, (6.9)

for which the double critical point is

mc(b)=2 `1 − b2, (6.10)

pc(b)==1+b

1 − b
. (6.11)

As for the fluctuation near the origin, if we define the scaled height
variable as

HN(y)=
h(v=t

2
3 y, t) − 2t

t
1
3

+y2, (6.12)

we have

Proposition 6.2. For the scaled height variable defined by (6.12),
one has (4.88) for the orthogonal case and (5.35) for the symplectic case.

7. DISCUSSIONS

In the preceding sections, we have given a detailed analysis of the
height fluctuation of the model for two special values of the strength of
the external source at the origin, c=1 and c=0. Our results show that the
fluctuation near the origin is described by the orthogonal/symplectic to
unitary transition in random matrix theory.

This implies, in particular, that the height fluctuation of the PNG
model at a single point near the origin is equivalent to that of the largest
eigenvalue of the transition ensemble. To check this, we performed Monte-
Carlo simulations of the PNG model and the transition random matrix.
Notice that the data for the transition ensemble can be obtained by diago-
nalizing random matrices generated according to the distribution (1.2) or
the corresponding one for the symplectic case. In Figs. 4 and 5, we have
shown the fluctuations of the height of the PNG model and the largest
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Fig. 4. Probability distributions of the scaled height of the PNG model for c=1 and the
scaled largest eigenvalue of the orthogonal-unitary transition random matrix ensemble. For
the PNG model, the parameters are for q=0.25, t=2000, and (a) r=0, (b) r=330,
(c) r=1000 (each 10000 samples). The first two cases correspond to (a) y=0 (b) y=1, in
which the scaling (4.84) is used. The case (c) is better fitted to the bulk scaling limit; the
scaling (4.26) is used. In the figures, they are represented as circles. For the transition random
matrix ensemble, the data are for N=500, (a) y=0, (b) y=1, (c) y=10 (each 1000 samples).
In the figures, they are represented as +. For (a) (resp. (c)), the GOE (resp. GUE) Tracy–
Widom distribution is also shown as a solid line.
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Fig. 5. Probability distributions of the scaled height of the PNG model for c=0 and the
scaled largest eigenvalue of the symplectic-unitary transition random matrix ensemble. For the
PNG model, the parameters are for q=0.25, t=2000, and (a) r=0, (b) r=330, (c) r=1000
(each 10000 samples). The first two cases correspond to (a) y=0 (b) y=1, in which the
scaling (4.84) is used. The case (c) is better fitted to the bulk scaling limit; the scaling (4.26)
is used. In the figures, they are represented as circles. For the transition random matrix
ensemble, the data are for N=200, (a) y=0, (b) y=1, (c) y=10 (each 10000 samples). In the
figures, they are represented as +. For (a) (resp. (c)), the GSE (resp. GUE) Tracy–Widom
distribution is also shown as a solid line.
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eigenvalue of the transition ensemble. We see an excellent agreement
between them.

Unfortunately properties of the transition ensemble have not been well
studied compared to the ensembles with a specified symmetry. For example,
it seems difficult to numerically compute the probability distribution func-
tion of the largest eigenvalue . This is sharply contrasted to the situation
for the GUE/GOE/GSE, for which the Painlevé representation allows us
to plot the probability distribution function with high accuracy. It would
be desirable to study the transition ensemble to better understand the
statistical properties of the PNG model.

Now we argue what happens for other values of c. For the fluctuation
at the origin, the results have been obtained in ref. 25 where a strong uni-
versality is observed. The GSE Tracy–Widom distribution describes the
fluctuation not only for c=0 but also for all values in 0 [ c < 1. The fluc-
tuation becomes the Gaussian for all values in c > 1. On the other hand,
the GOE Tracy–Widom distribution appears only at c=1. The Gaussian
fluctuation for c > 1 is stated only for the continuous model in ref. 25, but
is expected to persist for the discrete model as well. In Fig. 6, typical shapes
of the droplet are shown for three cases where c < 1, c=1, c > 1. From
these one should be able to guess that the shape looks similar for all values
in c [ 1 but a cusp-like piece appears near the origin when c becomes
greater than unity.

This suggests that the fluctuation near the origin also has a similar
universality. For all values in 0 [ c < 1, it is expected to be described by the
symplectic-unitary transition. This is a conjecture because we do not know
how to prove this at present, but is supported by a Monte-Carlo simula-
tion. See Fig. 7, where a good agreement is observed.

Fig. 6. Typical droplet shapes for three values of c=0.8, 1.0, and 1.2, which are fairly close
to the critical value c=1. The model parameters are taken to be t=1000, q=0.25. Notice
that the appearance of the shape changes drastically when c gets greater than one.
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Fig. 7. Probability distributions of the scaled height of the PNG model for c=0.5 and the
scaled largest eigenvalue of the symplectic-unitary transition random matrix ensemble.
Parameters are the same as those for Fig. 5.

For c > 1, we can also expect some universal behavior for the fluctua-
tion near the origin. We have not found a compact formula for general c,
but the situation becomes quite simple in the limiting case where a Q 0 with
0 < ca < 1 fixed. In this limit, the nucleations in the bulk are so rare that
the only those at the origin are important. Then the height at a position r
and at time t would be almost the same as that at a position 0 and at time
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Fig. 8. Probability distributions of the scaled height of the PNG model for q=0.0001,
c=50 and the Gaussian distribution (solid line). For the PNG model, the parameters are
t=2000 and r=0 (+), r=330 (n), r=1000 (N) (each 10000 samples).

t − r. Therefore the height fluctuation at a single point is given by the
Gaussian. If we set r=rt with 0 < r < 1 fixed, we have

lim
t Q .

P 1h(r, t) − (1 − r) aGt

(1 − r)
1
2 dGt

1
2

[ s2=
1

`2p
F

s

−.

e− t2

2 dt=erf(s) (7.1)

where aG= ca

1 − ca
and dG= `ca

1 − ca
. A result of a Monte-Carlo simulation corre-

sponding to this case is shown in Fig. 8. In addition, since nucleations at
the origin are independent for each time, the multi-point equal time height
fluctuation would be described by the one-dimensional Brownian motion.
The situation would be somewhat more difficult for a smaller c, but we
expect that the same Gaussian fluctuation is observed in an appropriate
limit.

8. CONCLUSION

In this paper, we have studied fluctuation properties of the one-
dimensional polynuclear growth (PNG) model in half-space with an
external source at the origin. We have mainly considered the model in a
discrete space and time, but have also given results for the model in a con-
tinuous setting. The results in the scaling limit are the same for both cases.

For two special values of the strength of the external source, c, we
have performed a detailed analysis. The c=1 case corresponds to a critical
point, which we call the orthogonal case. The c=0 case corresponds to the
model without the external source, which we call the symplectic case. The
main results are (4.88) for the orthogonal case, and (5.35) for the symplec-
tic case. According to these the height fluctuation of the model near the
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origin is equivalent to those of the largest eigenvalue of the orthogonal/
symplectic to unitary transition ensemble at soft edge in random matrix
theory. We have also shown that the height fluctuation at bulk is described
by the Airy process. For other values of c, we have conjectured that the
fluctuation is the symplectic-unitary type for 0 [ c < 1, whereas it is the
Gaussian type for c > 1. Some Monte-Carlo simulation results are also
presented to confirm our results and conjectures.

APPENDIX A

In this appendix, we give a derivation of (4.18). Let s1m be the 2m × 2m
matrix with the element s1m(i, j)=sgn(i − j). Define Tm(a), the finite
analogue of Toeplitz matrix with symbol a, to be

(Tm(a))i, j=â(i − j), (i, j=1, 2,..., 2m). (A.1)

The matrix s1m can be written as

s1m=1
2 {Tm(s (1)

1+)+Tm(s (2)
1 −)}, (A.2)

which is the finite analog of the matrix representation of (4.15). It is not
difficult to see

Tm(s (j)
1 ± ) Tm

1 1
s (j)

1 ±

2=1, (j=1, 2), (A.3)

and

Tm(s (1)
1+) Tm

1 1
s (2)

1 −

2+Tm(s (2)
1 −) Tm

1 1
s (1)

1+

2=2. (A.4)

Then it follows that

s−1
1m=

1
2
3Tm

1 1
s (1)

1+

2+Tm
1 1

s (2)
1 −

24 . (A.5)

Taking m Q . in (A.4) leads to

T(s(1)
1+) T 1 1

s (2)
1 −

2+T(s(2)
1 −) T 1 1

s (1)
1+

2=2. (A.6)

Let us notice

A1=1
2 {T(a(1)

1 −) T(a(1)
1+)+T(a(2)

1 −) T(a(2)
1+)}. (A.7)
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Multiplying the right hand side of (4.18) to this, one has

A1 ·
1
2
3T 1 1

a (1)
1+

2 T 1 1
a (1)

1 −

2+T 1 1
a (2)

1+

2 T 1 1
a (2)

1 −

24

=
1
4
32+T(a(1)

1 −) T(a(1)
1+) T 1 1

a (2)
1+

2 T 1 1
a (2)

1 −

2

+T(a(2)
1 −) T(a(2)

1+) T 1 1
a (1)

1+

2 T 1 1
a (1)

1 −

24

=
1
4
52+T(a(1)

1 −) 3T(s(1)
1+) T 1 1

s (2)
1 −

2+T(s(2)
1 −) T 1 1

s (1)
1+

24 T 1 1
a (1)

1 −

26

=1. (A.8)

Here one uses

T(a(1)
1+)=T(s(1)

1+) T(a(2)
1+), T(a(2)

1 −)=T(a(1)
1 −) T(s(2)

1 −), (A.9)

T 1 1
a (2)

1 −

2=T 1 1
s (2)

1 −

2 T 1 1
a (1)

1 −

2 , T 1 1
a (1)

1+

2=T 1 1
a (2)

1+

2 T 1 1
s (1)

1+

2 (A.10)

in the second equality, which follows from the fact that T(a±)=
T(b±) T(c±) holds when a±(z)=b±(z) c±(z), and (A.6) in the last equality.
This completes the derivation of (4.18).
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